Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract In the present paper, we are concerned with the link between the Kadomtsev–Petviashvili–Toda (KP–Toda) hierarchy and the massive Thirring (MT) model. First, we bilinearize the MT model under both the vanishing and nonvanishing boundary conditions. Starting from a set of bilinear equations of two‐component KP–Toda hierarchy, we derive multibright solution to the MT model. Then, considering a set of bilinear equations of the single‐component KP–Toda hierarchy, multidark soliton and multibreather solutions to the MT model are constructed by imposing constraints on the parameters in two types of tau function, respectively. The dynamics and properties of one‐ and two‐soliton for bright, dark soliton and breather solutions are analyzed in details.more » « less
An official website of the United States government
